36 research outputs found

    A Library for Locally Weighted Projection Regression

    Get PDF
    In this paper we introduce an improved implementation of locally weighted projection regression (LWPR), a supervised learning algorithm that is capable of handling high-dimensional input data. As the key features, our code supports multi-threading, is available for multiple platforms, and provides wrappers for several programming languages

    Optimal control with adaptive internal dynamics models

    Get PDF
    Optimal feedback control has been proposed as an attractive movement generation strategy in goal reaching tasks for anthropomorphic manipulator systems. The optimal feedback control law for systems with non-linear dynamics and non-quadratic costs can be found by iterative methods, such as the iterative Linear Quadratic Gaussian (iLQG) algorithm. So far this framework relied on an analytic form of the system dynamics, which may often be unknown, difficult to estimate for more realistic control systems or may be subject to frequent systematic changes. In this paper, we present a novel combination of learning a forward dynamics model within the iLQG framework. Utilising such adaptive internal models can compensate for complex dynamic perturbations of the controlled system in an online fashion. The specific adaptive framework introduced lends itself to a computationally more efficient implementation of the iLQG optimisation without sacrificing control accuracy – allowing the method to scale to large DoF systems

    Adaptive Optimal Control for Redundantly Actuated Arms

    Get PDF
    Optimal feedback control has been proposed as an attractive movement generation strategy in goal reaching tasks for anthropomorphic manipulator systems. Recent developments, such as the iterative Linear Quadratic Gaussian (iLQG) algorithm, have focused on the case of non-linear, but still analytically available, dynamics. For realistic control systems, however, the dynamics may often be unknown, difficult to estimate, or subject to frequent systematic changes. In this paper, we combine the iLQG framework with learning the forward dynamics for a simulated arm with two limbs and six antagonistic muscles, and we demonstrate how our approach can compensate for complex dynamic perturbations in an online fashion

    Dynamic Path Planning for a 7-DOF Robot Arm

    Get PDF
    Klanke S, Lebedev DV, Haschke R, Steil JJ, Ritter H. Dynamic Path Planning for a 7-DOF Robot Arm. In: Int. Conf. Intelligent Robots and Systems. IEEE; 2006: 3879-3884

    Does Dimensionality Reduction improve the Quality of Motion Interpolation?

    Get PDF
    In recent years nonlinear dimensionality reduction has frequently been suggested for the modelling of high-dimensional motion data. While it is intuitively plausible to use dimensionality reduction to recover low dimensional manifolds which compactly represent a given set of movements, there is a lack of critical investigation into the quality of resulting representations, in particular with respect to generalisability. Furthermore it is unclear how consistently particular methods can achieve good results. Here we use a set of robotic motion data for which we know the ground truth to evaluate a range of nonlinear dimensionality reduction methods with respect to the quality of motion interpolation. We show that results are extremely sensitive to parameter settings and data set used, but that dimensionality reduction can potentially improve the quality of linear motion interpolation, in particular in the presence of noise

    A Computational Model of Limb Impedance Control Based on Principles of Internal Model Uncertainty

    Get PDF
    Efficient human motor control is characterized by an extensive use of joint impedance modulation, which is achieved by co-contracting antagonistic muscles in a way that is beneficial to the specific task. While there is much experimental evidence available that the nervous system employs such strategies, no generally-valid computational model of impedance control derived from first principles has been proposed so far. Here we develop a new impedance control model for antagonistic limb systems which is based on a minimization of uncertainties in the internal model predictions. In contrast to previously proposed models, our framework predicts a wide range of impedance control patterns, during stationary and adaptive tasks. This indicates that many well-known impedance control phenomena naturally emerge from the first principles of a stochastic optimization process that minimizes for internal model prediction uncertainties, along with energy and accuracy demands. The insights from this computational model could be used to interpret existing experimental impedance control data from the viewpoint of optimality or could even govern the design of future experiments based on principles of internal model uncertainty

    A Theory of Impedance Control based on Internal Model Uncertainty

    Get PDF
    Efficient human motor control is characterised by an extensive use of joint impedance modulation, which to a large extent is achieved by co-contracting antagonistic muscle pairs in a way that is beneficial to the specific task. Studies in single and multi joint limb reaching movements revealed that joint impedance is increased with faster movements [1] as well as with higher positional accuracy demands [2]. A large body of experimental work has investigated the motor learning processes in tasks with changing dynamics conditions (e.g., [3]) and it has been shown that subjects generously make use of impedance control to counteract destabilising external force fields (FF). In the early stage of dynamics learning humans tend to increase co-contraction. As learning progresses in consecutive reaching trials, a reduction in co-contraction with a parallel reduction of the reaching errors made can be observed. While there is much experimental evidence available for the use of impedance control in the CNS, no generally-valid computational model of impedance control derived from first principles have been proposed so far. Many of the proposed computational models have either focused on the biomechanical aspects of impedance control [4] or have proposed simple low level mechanisms to try to account for observed human co-activation patterns [3]. However these models are of a rather descriptive nature and do not provide us with a general and principled theory of impedance control in the nervous system

    Methods for Learning Control Policies from Variable Constraint Demonstrations

    Get PDF
    Many everyday human skills can be framed in terms of performing some task subject to constraints imposed by the task or the environment. Constraints are usually not observable and frequently change between contexts. In this chapter, we explore the problem of learning control policies from data containing variable, dynamic and non-linear constraints on motion. We discuss how an effective approach for doing this is to learn the unconstrained policy in a way that is consistent with the constraints. We then go on to discuss several recent algorithms for extracting policies from movement data, where observations are recorded under variable, unknown constraints. We review a number of experiments testing the performance of these algorithms and demonstrating how the resultant policy models generalise over constraints allowing prediction of behaviour under unseen settings where new constraints apply
    corecore